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Abstract-A unified continuum approach to brittle and fatigue damage is presented. A scalar
variable is used to represent the damage state. General forms of the constitutive equations are
established on a thermodynamic basis. Specific evolution laws are postulated and used to illustrate
the capacity of the model. The governing equations are solved numerically. The computational
effort is reduced by the application of an adaptive stepsize selection procedure for the integration
of the rate equations and by uncoupling the constitutive equations. The response of a plate with an
induced crack subjected to periodic loading is studied.

1. INTRODUCTION

Degradation of material properties is the result of initiation, growth and coalescence of
microdefects, such as microvoids, microcracks and microcrazes. In circumstances where
the defects are distributed in a statistically homogeneous manner, it is advantageous to
model the mechanisms associated with material degradation within the context of con­
tinuum damage mechanics (COM). In COM internal state variables are introduced, which
may be regarded as a continuous measure of the material degradation (Krajcinovic, 1984;
Kachanov, 1986). These damage variables require the establishment of additional rate
equations and criteria that indicate when the current state will change. The governing
equations can be derived within a thermodynamical framework in a manner as discussed
by Coleman and Gurtin (1967) and Davison and Stevens (1973). In this paper a restriction
to isotropic damage is made. Then, the damage state can be represented by a scalar variable
(Chaboche, 1988). In addition, only brittle failure mechanisms are considered. Brittle failure
processes are characterized by the fact that damage growth is the only dissipative mechanism
and that the current state does not depend on the rate at which it has been realized (Marigo,
1985). A distinction is made between brittle and fatigue damage. A unified approach is
presented for both mechanisms.

The governing equations are solved numerically. This is performed by transforming
the law of balance of momentum into an integral form. Then, the time domain is discretized
and an incremental solution process is applied. The integral equation is discretized in space
with the finite element method and solved iteratively. The internal variables are evaluated
by integration of the rate equations. In situations where an explosive increase in the damage
state is observed, it is efficient to uncouple the governing equations. A further reduction in
computing time is achieved by using an adaptive stepsize algorithm. A test analysis is carried
out to investigate the effectiveness of these time-saving procedures.

Currently much effort is spent on the modelling of macrocrack initiation and propa­
gation by considering the crack tip as a process zone in which the damage state increases
(Lemaitre, 1986). Crack growth is identified with the evolution of a completely damaged
zone, without any reference to concepts taking into account the material discontinuity of
the cracks. These local approaches to fracture can be applied in cases that fracture mechanics
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analysis cannot cope with, thus providing a viable tool for failure analysis. The implemen­
tation in existing finite element codes is relatively straightforward as advantage can be taken
ofsimilarities with already built-in mechanisms such as plasticity. The capacity of the model
is illustrated for a plate subjected to cyclic loadings.

2. GOVERNING EQUATIONS

At every instant during the deformation of a continuum, the laws of conservation of
mass, momentum, angular momentum and energy must be satisfied. In addition, for every
admissible process the Clausius-Duhem inequality must be satisfied. This inequality states
that (Malvern, 1969)

(I)

where p, t/J, e, 11, a, D, h denote the mass density, the Helmholtz free energy, the absolute
temperature, the specific entropy, the Cauchy stress tensor, the deformation rate tensor and
the heat flow vector, respectively. The state of a body is known when for any material
particle, the position vector x and the temperature eare known for the whole time interval
under consideration. In order to close the system of balance equations it is necessary to
determine constitutive equations for /1. t/J, a and h. These quantities have to satisfy a
number of principles, which restrict the possible forms of the functional dependence on the
independent variables (Malvern. 1969). Application of these principles yields

I
aCt) = J F(t)· P[E(r), e(r), P(r)' Ve(r); T ~ t]· FC(t),

I
h(t) = J F(t)· bo[E(r), OCr). P(r)' Ve(r); r ~ t],

t/J(t),I1(t) t/J./1[E(r), e(r), FC(r)' Ve(r); r ~ t],

(2)

(3)

(4)

where F, P, E denote the deformation gradient tensor, the second Piola-Kirchhoff stress
tensor and the Green-Lagrange strain tensor, respectively.

The inconvenient formulation of the constitutive equations in terms offunctionals will
be circumvented by the introduction of internal variables. Omitting thermal effects, it is
assumed that the state of a body can be described completely by the instantaneous values
of E, E and a set ;S of internal variables, which account for the influence of the past on the
current values of the constitutive variables. It is proposed that the rate of the internal
variables depends on the same set of variables (Coleman and Gurtin, 1967).

The Clausius-Duhem inequality (1) places further restrictions on the possible forms
of the constitutive equations. For the particular set of independent variables the conse­
quences of the restrictions with respect to the Clausius-Duhem inequality will be investigated.
The rate of the free energy is given by

(5)

where the symbol ® denotes a product operator. Substitution of (5) into (1) gives
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Fig. I. Damaged volume element.
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(6)

Condition (6) must hold for all possible choices of the aforementioned quantities, which
leads to

(7)

Inequality Oh is always satisfied for

(8)

3. BRITTLE FAILURE MECHANISMS

3.1. General theory
Next, the modelling of brittle failure mechanisms is discussed. A distinction in the

formulation of the criterion for damage evolution, is made between brittle and fatigue
damage. The former develops under monotonously increasing loadings. The latter occurs
for periodical loadings well below the material strength, leading to a large number of
loading reversals until failure.

The damage state of materials can be defined by the existing distribution and type of
microdefects (Krajcinovic, 1984; Kachanov, 1986). Consider the volume element in Fig. 1.
A surface of intersection bS is identified by the normal n. Due to the formation of micro­
defects in the volume element the effective load-carrying area, associated with the direction
of the normal n, is reduced from bS to bSe• The damage variable associated with the
direction of n can be defined as

(9)

In the following, isotropic damage states are considered. This implies that D n does not
depend on the direction of the normal n, such that the damage can be characterized by a
scalar quantity D = D(x, t), for which D = D(x, to) = Do ~ 0 corresponds to the initial
state and D = D(x, tc) = Dc < 1 corresponds to complete local rupture. In brittle failure
processes it is assumed that damage growth is the only dissipative mechanism. Then, the
state of a body is determined by the Green-Lagrange strain tensor E, its material time
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derivative E and the damage variable D. Consequently, the equations for P, IjJ and jj are
formulated as

P = P(c;g); IjJ = 1jJ(c;g); D = D(c;g); c;gT = {E, E, D}.

Application of the Clausius-Duhem inequality (1) yields

(10)

iJljJ
P = Po iJE; IjJ = IjJ(E, D) ; (I I)

Using the concepts of effective stress and strain equivalence (Chaboche, 1988) the consti­
tutive equations can be written as

(12)

In brittle mechanisms the current state does not depend upon the rate at which this state
has been realized (Marigo, 1985). Mathematically this implies that the damage evolution
must be positively homogeneous of degree I with respect to E

D(AE, E, D) = AD(E, E, D) V), ~ O. ( 13)

In addition to these equations, a criterion for damage growth must be established. For
this purpose the existence of a closed reversible domain n in strain space is proposed, which
contains the origin E = 0 and which is bounded by the surface r. The damage does not
grow for E E n, but may evolve if E is located on the boundary r or outside the domain n.
Formally the domain n and its boundary r can be expressed as

n={Elg(E,K)<O}; r={Elg(E,K)=O}, (14)

where K is a parameter that serves as a current threshold. In general its value depends on
the deformation history and the material. The following set 9 is chosen

g(E, K) = e(E) - K

with e(E) an equivalent strain measure.

(15)

3.2. Brittle damage
In case of brittle damage it is assumed that the boundary r cannot be crossed (Simo

and Ju, 1987). The current state can only change ifE(t) E r. Then, using (IS), the consistency
condition 9 = 0 must be satisfied on r. This gives

K = <i)

where the McAuley brackets are defined as

(16)

{

X

<x) = 0
if x ~ 0,

if x < o. (17)

Condition (16) describes how the boundary r changes. In fact it states that the damage
will grow, when the equivalent strain ereaches the current threshold K and the strain rate
is positive. If the material property Ko denotes the initial threshold, we must have that
K ~ Ko. The current boundary r follows from integration of (16)
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K(t) = max [Ko, e(r); r ~ t].

Then, for brittle failure processes the evolution law is expressed as
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(18)

if e< K,

if e= K.
(19)

It is noted that (19) satisfies the conditions (12)3 and (13). The functional dependence of </J
on the state variables E and D must be established. It must provide a fairly accurate
description of the underlying microstructural phenomena. For practical applications, how­
ever, the number of phenomenological constants should be kept to a minimum. A power
law dependence of </J on the equivalent strain and damage seems to be a rational choice

(20)

where c ~ 0, d, e and Dc are material dependent parameters. Integration of the evolution
law yields (provided that d -# -1 and e -# -1)

(21)

where a = I +e, y = d+ I and f3 = cay-I. Using Dc = D(K = KC>, with Kc the equivalent
strain at complete rupture (21), becomes

(22)

It can easily be demonstrated that for isotropic linear elastic materials the equivalent strain
can be written as

e= J~ljJO(E), (23)

where E is the Young's modulus. This definition does not distinguish between tensile and
compressive loadings. For most brittle materials the equivalent strain should express the
important part played by tension strains. A definition, which satisfies this requirement is
given by

3

e= L [<Ci ) 2 +h <- c;) 2],
;= I

(24)

where Ci are principal strains. In order to express that compressive strains are less harmful

SAS 30:4-1
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Fig. 2. Influence of h on the damage surface.

to damage growth than tensile strains, the parameter hE [0, I] has been introduced. In Fig.
2 the influence of h on the damage surface r is demonstrated for K = 1.7· 10- 2 and 1>3 = 0.

The model for brittle damage is fully specified by the stress-strain relation (12)1> the
definition of the equivalent strain, either (23) or (24), the relations for the current threshold
(18) and damage (22). The model is illustrated with two examples. In accordance with most
of the work on COM, it is assumed that initially the material is undamaged and that the
damage in the ruptured state equals one.

Concrete is known to behave as a linear elastic material that contains numerous
microcracks (Bazant, 1986). The behaviour of concrete under compressive loading is inves­
tigated. From experimental observations failure in concrete is a continuous process, which
initiates at low loading levels with an increasing amount of damage for increasing loading
levels. The necessary model parameters are given in Table I. The undamaged Young's
modulus Eo, the threshold strain Ko and the failure strain Kc were obtained from Krajcinovic
and Fonseka (1981). The phenomenological constants were chosen so as to give a good fit
of the experimental data presented by Krajcinovic and Fonseka (1981). In Fig. 3 the
normalized model stress-strain curve for compressive loading is shown together with the
experimental observations.

The same procedure was adopted to model the behaviour of Polystyrene (PS), an
amorphous glassy polymer, under tensile loading. Its mechanical behaviour has been the
subject of extensive investigations and in particular the role of crazing in fracture has been
studied in detail (Chen et al., 1981). Experimental data for PS under tension loading were
obtained by Rabinowitz et al. (1973). These data and the fitted phenomenological constants
are given in Table 1. In Fig. 4 the stress-strain curve according to the present model is

Table I.

Concrete PS

Eo 27.5 GPa 3.3 GPa
Ko 0 0
K, 6'10-' 2.04'10- 2

IX 1.25 3.25
y 3 3

Do 0 0
D, I I
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Fig. 3. Concrete under compressive loading.

shown together with the experimental data. A fair agreement between experimental and
model curves in Figs 3 and 4 is revealed. These results suggest that the present damaged
model is capable of describing the softening behavior of brittle materials under monotonic
loadings.

3.3. Fatigue damage
Fatigue failure involves initiation and growth of a damaged zone, generally developing

from a stress concentration site at the surface. This is followed by the initiation of a
macrocrack with subsequent crack propagation until some critical crack size is reached at
which catastrophic fracture occurs (Sauer and Richardson, 1980; Chaboche, 1988). In
fatigue it is assumed that the boundary r of the domain n is not influenced by the
deformation history and that the damage state may change ifE~n. Then a form analogous
to eqn (19) can be employed for the damage evolution law
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Fig. 4. PS under tensile loading.
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. {O if e< Ko,

D= cf>(E,D)<t> ife~Ko. (25)

The evolution laws (19) and (25) differ in the sense that in fatigue the threshold K = Ko is
fixed and that the damage surface can be crossed. The functional dependence on cf> on the
equivalent strain and damage is proposed as

(26)

where IX ~ 0, p, yare material parameters. In the next section it will be demonstrated that
the resulting evolution law contains some generally accepted cumulative damage laws.
Substitution of (26) into (25) and integration over one period [ti - b til with D(t;) = D j yields

(27)

where H(') is the Heaviside step function.
Consider a body that is loaded in n blocks. A block is defined as a series of loading

reversals between two fixed amplitudes. The kth loading block takes place for
N k - I ~ N < Nk cycles with k = 1, ... , n. Assuming that the incremental damage growth
per cycle is very small (27) can be replaced by a differential equation for D(N) where N
acts as a dimensionless time. Then the damage evolution in block k is expressed as an initial
value problem

(28)

where Dk - I is the initial value at the beginning of the kth loading block. The integral (h

must be calculated for specific loading situations. For the effective strain as sketched in Fig.
5, /h takes the form

~ __IX_(-Y+l+-Y+l_2 y+l)
Uk - 1 Em Em Ko·y+ I 2

(29)

3.4. Uncoupled constitutive equations
The constitutive equations are coupled and consequently the solution process is quite

complex. In what follows an alternative solution procedure is discussed, which enables us
to integrate the damage growth laws analytically. Furthermore, it will be demonstrated that
the resulting expressions can be reduced to established cumulative damage laws.

t [T]

Fig. 5. Variation of f with time.
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Under the assumption that the stress tensor is not influenced by the damage, until a
critical value Dc has been reached at which local rupture occurs, the concept of effective
stress can be written as

(30)

As a result of (30) the stress-strain relation and the evolution equation have become
uncoupled, implying that the local deformations are not affected by the failure process.
Thus Jk in (28) is constant during each loading block and the damage after Nk = Nk_ I +!:iNk
cycles is

Dk = (!:iNk/Nck+Dkl~lll) t/(I-lll " N 1
c. = (l-fJ)Jk '

(31)

The number ofcycles to failure for loading in block k is obtained by substitution of !:iNk =
Nck , Dk- l Do and Dk = Dc into (31)

(32)

For loading in n blocks eqn (31) can be written as

(33)

If the initial damage is given by Do = 0 and the critical damage is given by Dc = I, (33)
reduces to

(

n )I/(I-Ill
D(N) = L: !:iNk/Nc. .

k=!

(34)

This cumulative damage rule is commonly referred to as the modified Palmgren-Miner
damage rule (Hwang and Han, 1986). For fJ = 0 the so-called linear Palmgren-Miner
damage rule is obtained.

4. NUMERICAL PROCEDURES

4.1. Time discretization and linearization
In the following the numerical solution procedure for the governing equations is

discussed. Throughout the complete history of load application the balance laws must be
satisfied. In the local balance equation of momentum inertial effects and body forces are
omitted. According to the principle ofweighted residuals the resulting equilibrium equation
is equivalent to the requirement that at every instant and for all admissible weighting
functions w, the following integral equation is satisfied (Bathe, 1982)

LWO(VOO')dV=O, (35)

where V is the current volume of the body. Using integration by parts and Gauss' theorem,
the so-called weak form of the principle of weighted residuals is obtained. Transformation
of the weak form to the initial configuration leads to
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(36)

where the subscript 0 denotes that the quantities are defined with respect to the initial
configuration. This integral equation constitutes the basis for the finite element approxi­
mations at discrete times in the loading history.

The requirement that the weighted residuals equation is satisfied at every instant will
be relaxed and replaced by the requirement that this is true for a number of discrete times
to, t l ,· •• ,tn' The time discretization results in an incremental solution process. It is supposed
that the solutions up to time tn are known and that the solution at tn+1 = tn+/ltn is to be
determined.

At time tn + 1 the integral equation (36) is solved numerically. An iterative procedure,
for determining the position vector field and its related quantities, is derived by writing all
unknown quantities as the sum of an approximation of and a deviation from the exact
solution. Henceforth, the real value of a quantity q at time tn+I is denoted by q(tn+ I)' An
approximation for q(tn+ I) obtained in the ath iteration is denoted by ¢,+ 1 and the cor­
responding deviation is denoted by Jq. The final computed value at tn + 1 is denoted by q.... I'

This gives

x(tn+d = x~+ 1 +Jx; F(tn+ I) = F~+ 1 + (VoJx)"; ~(tn+ d = ~~+ 1+J~;

P(tn+ I) = P~+ 1+ JP; PO(tn+ I) = p~.+ I+ Jpo.

The linearized iterative change in the second Piola-Kirchhoff stress tensor JP reads

(
ap apT J~) 4

JP = aE + a JE " , : JE = c::+ 1 : JE.
~ E__ ,.t:.,

(37)

(38)

Since it is impossible to give a general procedure for representing the deviations of the
boundary forces in terms of Jx, this term is neglected in the weighted residuals formulation.
Using (37) and (38) the integral equation (36) is linearized to the following expression:

[ (Vow)c: (~+ I .4I+4N~+ I): (VoJx)dVoJv.

= - [ (Vow)": ~+ I'F,;'+ 1dVo+ [ W·P~.+I dSo, (39)Jvo Jso

where 41 is the identity tensor of rank 4 and 4N is defined as

4N:A= WC:{Fc'Ac+A'F}]'Fc VA. (40)

After having solved Jx from the integral equation (39), a new approximation for the
position vector field is derived. If the right-hand side of the integral equation is sufficiently
small, the approximate solution is considered accurate enough. Then, the iterative process
is terminated and the solution process is repeated at the next discrete time. If such is not
the case the iterative process is continued.

New estimates for the internal variables must be determined by integration of the rate
equations t = E(co(t», giving
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(41)

The function Eis approximated by a linear polynomial between the successive times tn and
tn + I

(42)

An initial estimate for the internal variables at tn ... I is obtained by substitution of the
quantities at tn in the trapezium rule (42) :

(43)

4.2. Stepsize selection
In order to deal efficiently with computing times, some mechanism for automatically

changing the stepsize as the integration proceeds, should be employed. Intuitively, if the
solution is changing very slowly, then one can use a large stepsize, whereas in regions where
the solution is changing rapidly a small stepsize must be used. The stepsize must be selected
before the start of the next integration step. The usual approach is to estimate the truncation
error for a step and, depending on its value, adjust the current stepsize either upward or
downward. The local truncation errors for Z;{tn+ \) are defined by

(44)

The calculation of the truncation error L(tn+ I) is based on approximations of the internal
variables at time tn+ I' Since at tn no information is available concerning the quantities at
tn + J' explicit integration methods should be used to calculate approximations of the internal
variables. A straightforward method is to expand Z;(t) into a Taylor series in the neigh­
bourhood of ~n, thus

(45)

where l:.<,[') is the pth derivative with respect to time. An approximation of the local truncation
error Ln+ \ of this kth order integration method is found by comparing the integration
method with a higher order method, e.g. one of order k + I

T _k+1 k _ I J:;'(k)(~ )k+1
l;'n+l- l:.n+I-l:.n+I-(k+l)!l.n tn . (46)

Since the components of l:. require different stepsizes, the stepwise must be determined to
the needs of the worst-offender equation. The most critical component of l:. is denoted by
Z and the corresponding evolution function is denoted by T. Because Z may vary enor­
mously in magnitude, a suitable criterion for the stepsize selection is obtained by requiring
that the relative errors have a constant value e. Thus, we write

(47)

where M n+ \ should be considered as the desired, i.e. highest admissible, truncation error.
Using (46) and (47) the stepsize is given by

(48)
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The preceding equation can be cast into an equivalent form. Suppose we take the last
step, i.e. !1t = !1tn __ I' and produce a local error M. Using (46) the step !1tn , which would
have given the desired truncation error M n + 1, is calculated as

1

M /1,(k+ll
!1t =!1t ~n n-I M (49)

IfM is larger than M n+ I, the preceding equation indicates how much to decrease the stepsize
when the present step is retried, otherwise it calculates how much the stepsize can be
increased safely for the next step.

4.3. Finite element equations
The integral form (39) permits the solution of the unknown position vector field to be

approximated by the finite element method. The weighting functions are chosen according
to the Galerkin method (Bathe, 1982), which implies that the weighting functions and the
position vectors are interpolated identically. As a result of this discretization eqn (39) can
be written as a summation over all elements:

L T L T L Twe 'Kc'bxe = _ we ·oe+ we 'he-.- - - -'

!C = r
v
" (Vop)' (~+ 1 .4I+4N~+ I)' (Vof) dVo,J, 0

!.!e = ~., (Vop) •p~+ 1 • F~~ 1 d VO,J, 0

he -1 ,J.. a dS- - '¥ Pon + I 0,
S<' -o

(50)

where b~e and lYe are columns containing the iterative changes in the nodal point position
vectors and weighting functions of element e, and ¢ is the corresponding column of
interpolation functions ; ~c denotes the element stiffness matrix and the columns !.!e and It
store the internal and external nodal forces, respectively. Assemblage of all element stiffness
matrices and internal and external element forces leads to a linear set of equations for the
iterative changes in the nodal point position vectors

K'b~ = r. (51 )

In each iteration a residual load vector r and the stiffness matrix ~ are calculated. The
iterative changes in the nodal point position vectors are obtained by solving (51). Then,
new approximations of the quantities that depend upon the nodal point position vectors
are calculated. Subsequently, new approximations for the internal variables are determined
by numerical integration of the evolution equations. The iterative process is continued until
the residual load vector or the iterative changes in the position vectors are sufficiently small.
For the next applications a four-node isoparametric element was chosen for the evaluation
of the element stiffness matrix and the element nodal forces.

4.4. Test analysis
The performance of the algorithm for the numerical integration of the evolution

equations is checked. The case to be considered involves fatigue loading of a plate. It is
assumed that the stress-strain relation is given by (12).
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Fig. 6. Plate subjected to uniaxial loading.
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Consider a plate of dimensions 25 *25 *0.5 [L 3], which is loaded at the free edge
x = 25 [L] by a distributed cyclic force q (Fig. 6). The stress state in the plate is homogeneous
and uniaxial. For an isotropic linear elastic material the stress-strain relation becomes

v

I-v

v

(52)

The external loading will cause the plate to deteriorate. For fixed loading amplitudes 0 and
qm, the equivalent strain in one cycle will vary between 0 and em' It is assumed that the
deformation in thickness direction does not influence defect growth. Using (24) and (52)
the equivalent strain can be written as

The damage evolution law is given by [see eqns (28) and (29)]

dD IX- = --(fI+1 -KY+1)DfJ. D(N = 0) = DdN ')1+ 1 m 0, o·

(53)

(54)

As the displacement field is dependent upon the current damage state, the governing
equations must be solved numerically. However, when the elastic and dissipative mech­
anisms are uncoupled according to (30) an analytical solution can be established [cf. eqn
(33) for n = 1]. The model parameters are given in Table 2. The calculations were
accomplished for loadings ranging from 0 to qm = 17.2 [F' L - I]. The stepsize has been
computed according to (49).

In Fig. 7 the damage is depicted as a function of the number of cycles for different
relative truncation errors e. For each e the numerical solutions for the coupled and uncoupled
equations are shown together with the analytical solution for the uncoupled equations. The
small deviations between the solutions for the coupled and uncoupled equations indicate
that the application of the uncoupled equations should be favoured with regard to com­
puting times. This is illustrated further in Table 3, where the computing times for both
solution methods are given for different relative errors e. The computing times are scaled
to the smallest value, which is obtained in the uncoupled situation with e = 0.1. For a relative
error e = 0.01 the numerical integration shows greatest accuracy, but with associated larger
computational effort.

Table 2. Material data

E= 3'IO' [FL-']
v = 0.25
h = 0.2

Do = 2.4,10- 5

Cl = 5.35 '\0'
P= 1.4
Y = 2.6

K o = 0
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The stepsize selection procedure is illustrated for e = 0.025. In Fig. 8 the damage
evolution is shown as a function of the number of cycles. The instants, at which the
incremental analysis was carried out, are marked. In Fig. 9 the equivalent strain is depicted
as a function of the number of cycles. For the uncoupled equations the equivalent strain
has a constant value until a critical damage level is reached. For the coupled equations the
equivalent strain is a continuously increasing function that follows the damage evolution.
In Fig. 10 the stepsize (in cycles) is shown as a function of the number of steps. The stepsize
selection procedure performs very well, computing relatively large steps when the damage is
changing slowly and continuously decreasing steps as the damage increases. The deviatiQns
between the stepsize selections for the coupled and uncoupled equations result from a
different first derivative in (48). Hence, a substantial reduction in computing time is achieved
with the adaptive stepsize control.

It is remarked that conclusions drawn from the uniaxial stress state will also hold for
multi-axial stress states. A multi-axial stress state will merely result in a different damage
equivalent strain. For example, in the case of a biaxial loading with the same kinematic
boundary conditions, but with P I1 = P22 = P, the equivalent strain will become 8 = )2E11 •

5. CRACK GROWTH IN PLATE

The fatigue damage model is used to predict crack growth with a local approach to
fracture. Here a crack is represented as a zone of critically damaged elements (Lemaitre,

Table 3. Relative CPU times

e Coupled Uncoupled

0.01
0.025
0.05
0.1

36.4
27.1
21.8
18

1.7
1.3
1.1
1
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1986). To characterize the initial damage, each element in the mesh is divided into four
subareas Sj, i E {I, 2,3, 4} (Fig. 11). The subareas are the Gauss point influence zones, which
comprise the points where the constitutive equations are evaluated. Since materials typically
contain flaws ofunknown dimensions and positions, the initial damage should be considered
as a random quantity. Paas et al. (1990) presented a model for determining the statistics
of the initial damage. In this model the random damage is associated with the elementary
cell (EC) surface. The elementary cell surface Aee is a material property. Its value can be
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Fig. 10. Stepsize vs number of steps (e 0.025).

determined by fitting a model probability distribution function of the maximum damage in
a test specimen to the corresponding experimental probability distribution function. The
resulting best-fit parameters are the elementary cell surface area and the associated mean
maximum damage. The subarea Sf consists ofkf = S;/Aec elementary cells. Due to the finite
element discretization the stress state in Si is almost homogeneous. Then first failure occurs
in the EC with the largest initial damage. It is assumed that this event marks the complete
failure of a subarea. Thus the strength of the weakest EC is the limiting factor in the
reliability of the subarea Si' Under the assumption that the probability density function
(PDF) of the damage in an EC is distributed exponentially, the PDF of the maximum initial
damage in Sf is given by (Paas, 1990; Paas et al., 1990).

fD(D) = k).. exp (-}.D)[I-exp( _}.D)]ki-l; k i = S;/A ec , (55)

where Ip. is the mean damage in an EC.

1

~ -+ --.3

2

Fig. II. plane stress element divided into four subareas.
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Fig. 12. Plate with an induced crack.

595

Consider the plate of dimensions 130 * 130 *0.1 [L 3] in Fig. 12. A crack of length 20
j2 [L] is induced at the origin at angle of 45°. The plate is loaded by a cyclic force (qh qz),
which varies between (0,0) and (qh qz). The corresponding finite element mesh is shown
in Fig. 13. As a result of the randomness in the initial damage state failure is a stochastic
process and simulation techniques must be utilized. As our main concern is the prediction
of crack patterns, only one calculation has been carried out for each load case. In this
calculation the initial damage in the elements is given by the expected values of the PDF
(55). As a consequence large values for the initial damage state will be contributed to large
subareas. The analysis has been performed for the uncoupled constitutive equations using
a relative error of e = 0.025. The material data are given in Table 4.

Table 4. Material data for crack propagation

E= 3, J03 [P'L- 2
)

v = 0.25
C( = 1.93 '10·
P= 1.4
y = 2.6
h = 0.2

Dc = 0.995
Ko = 0
Kc = 4'10- 2

), = 9.6'104

A", = 0.3 [L 2)

Fig. 13. Finite element discretization of plate.
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Crack initiation and growth are determined for different types of loading. The loading
is characterized by the ratio of the force amplitudes 9 = Q2/QI' The amplitude q, is kept
fixed at 0.74 [F' L - I]. Three situations are examined:

(I) 9 = I
As the loading and the boundary conditions are symmetrical, a crack will develop from

the induced crack tip and proceed along the axis of symmetry. In Fig. 14(a) the crack
pattern is shown for N = 6.65 . 103 cycles. The corresponding von Mises stresses are shown
as well; dark regions mark the position of the current crack tip.

(2) 9 = 0
Due to the non-symmetrical stress-state a crack initiates at the induced crack tip and

propagates straight to the left. In Fig. 14(b) the crack pattern and the corresponding von
Mises stresses are shown for N = 1.4' 104 cycles.

(3) 9 = 0.5
In this case a combination of the failure processes in (I) and (2) is obtained. In Fig.

14(c) the crack and the corresponding von Mises stresses are depicted for N = 1.4' 104

cycles. In contrast with the cracks that have developed for 9 = I and 9 = 0, the crack for
9 = 0.5 is not straight. Until some transition phase is reached the crack proceeds identically
to the crack for loading in x-direction (9 = 0). Thereafter the crack proceeds in accordance
with the crack for equal loading amplitudes (9 = I). This is a self-repeating process, as a
result of which the crack will zigzag through the plate.

6. DISCUSSION

In this paper a continuum damage approach was adopted to describe brittle failure
mechanisms. Brittle failure processes require the establishment of the stress-strain relation
and the damage evolution equation together with a criterion for damage growth. A scalar
variable was used to represent the damage state. The stress-strain relation was based on
the concepts of effective stress and strain equivalence. A distinction, which is based on the
formulation of the damage criterion, was made between brittle and fatigue damage. For
brittle damage the damage surface may grow under given loading conditions, but for fatigue
damage the surface is invariable. The equivalent strain accounts for the fact that tensile
and compressive loadings contribute differently to the failure process. The mathematical
representation of the evolution laws was based on a power law dependence on equivalent
strain and damage. The mechanical behaviour of concrete and polystyrene under uni-axial
loading showed good agreement with experimental observations. The model developed for
fatigue loading has been shown to yield some generally accepted cumulative damage models.

The resulting equations were solved numerically. A substantial reduction ofcomputing
time was achieved by employing an adaptive stepsize algorithm. A further reduction in
computing time was achieved by uncoupling the stress-strain relation and the damage
evolution equation. For failure mechanisms, which show an explosive increase in the
damage state, the uncoupling is to be favoured.

A local approach to fracture was used to predict both crack initiation and propagation
by representing the crack as a zone of completely damaged elements. As our main concern
was directed towards the qualitative prediction of the crack pattern, only one calculation
was carried out by attributing the expected values of the initial damage distribution to the
Gauss points in the mesh. Crack propagation in a plate with an induced crack was studied
for three distinct loadings. Although no reference can be made to other studies, the results
are qualified as promising. Future work will be devoted to the statistics of the damage
variable and its effects on failure prediction. These issues are closely related to the reduction
of the mesh sensitivity, which can be obtained using the concept of the elementary cell as
a characteristic scale in the mesh.
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(a)

(b)

(c)

Fig. 14. Crack patterns and corresponding von Mises stresses for (a) 8 = 1, (b) 8 0 and (c)
8 0.5.
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